eduã

GCE A LEVEL MARKING SCHEME

AUTUMN 2021

A LEVEL
CHEMISTRY - COMPONENT 2
A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

AUTUMN 2021 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)			CH_{2}	1			1		
	(b)	(i)	80		1		1			
		(ii)	peak \mathbf{C} \mathbf{B} is methylcyclohexane and \mathbf{C} will have a longer retention time than \mathbf{B}, as its M_{r} is greater than \mathbf{B}, but not as great as propylcyclohexane which is peak \mathbf{D} other acceptable answers to be discussed at the conference			1	1			
2	(a)		1:1 reaction therefore 0.500 mol of Br_{2} is needed (1) volume $=\frac{m}{d}=\frac{159.8 \times 0.500}{3.16}=25.3$		1	1	2	1		
	(b)		the melting temperature is lower (and over a range)	1			1		1	
3	(a)		yellow because the colour seen is the colour(s) not absorbed accept orange / red / other end of visible spectrum	1			1			
	(b)		$\mathrm{Sn} / \mathrm{Fe}$ and concentrated HCl		1		1		1	
	(c)	(i)	ethanoic anhydride / ethanoyl chloride / ($\left.\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COCl}$	1			1			
		(ii)	yellow / orange to colourless / white (precipitate)		1		1		1	

Section B

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
6	(a)						1		1		
	(b)	(i)		$\begin{equation*} \mathrm{n}\left(\mathrm{CaSO}_{4}\right)=\frac{5.70}{136}=0.0419 \tag{1} \end{equation*}$ 1:1 mol ratio therefore \% purity of calcium propanoate $\begin{equation*} \frac{0.0419 \times 186}{8.38} \times 100 \tag{1} \end{equation*}$ 93.0 (1) must be given to 3 sig figs	1	2		3	1		
		(ii)	1	separating / dropping funnel	1			1		1	
			II	award (1) for any of following look up the densities and the less dense liquid is the top layer / more dense liquid is the bottom layer add a drop of hexan-1-ol / water to the mixture and see which layer it joins			1	1		1	
		(iii)				2		2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			solubility in 100 g water at $100^{\circ} \mathrm{C}$ is 56 g and at $0^{\circ} \mathrm{C}$ is 49 g in 20 g water $\Rightarrow \frac{56}{5}$ at $100^{\circ} \mathrm{C}$ and $\frac{49}{5}$ at $0^{\circ} \mathrm{C}$ amount precipitated is $\frac{7}{5}=1.4 \mathrm{~g}$ (1)		2		2		
(d)	(i)		1			1			
	(ii)				1	1			
	(iii)			1		1			
(e)	(i)	$\begin{align*} & c=f \lambda(1) \\ & f=\frac{3.00 \times 10^{8}}{480 \times 10^{-9}}=6.25 \times 10^{14} \tag{1} \end{align*}$	1	1		2	2		

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	$\begin{equation*} \frac{\text { absorption } 2}{\text { absorption } 1}=\frac{\text { concentration } 2}{\text { concentration } 1} \tag{1} \end{equation*}$ $\begin{equation*} \text { concentration } 2=\frac{0.70 \times 5 \times 10^{-4}}{1.25}=2.8 \times 10^{-4} \tag{1} \end{equation*}$ credit other appropriate method		1	1	2	1	
	Question 6 total	4	10	3	17	4	2

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
7	(a)				award (1) for $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$ on left hand side and $\mathrm{H}_{2} \mathrm{O}$ on right hand side both needed		1		1		
	(b)	(i)		5% conversion \Rightarrow total 120 mol of cyclohexanol / cyclohexanone but 2:1: ratio therefore 80 mol cyclohexanol (1) $\begin{equation*} M_{\mathrm{r}}(\text { cyclohexanol })=100.1 \tag{1} \end{equation*}$ $\begin{equation*} \text { mass of cyclohexanol }=100.1 \times 80=8.01 \tag{1} \end{equation*}$ must be given in kg	1	1	1	3	1		
		(ii)	1	the N atom has a lone pair of electrons which attacks the relatively $\delta+$ carbon atom (of the carbonyl group)		1		1			
			II	as the reaction proceeds the intensity of the $\mathrm{C}=\mathrm{N}$ at $1665 \mathrm{~cm}^{-1}$ decreases O-H at $\sim 3200 \mathrm{~cm}^{-1}$ decreases $\mathrm{C}=\mathrm{O}$ at $1650-1750 \mathrm{~cm}^{-1}$ increases $\mathrm{N}-\mathrm{H}$ at $3300-3500 \mathrm{~cm}^{-1}$ increases $\mathrm{C}-\mathrm{N}$ at $1020-1250 \mathrm{~cm}^{-1}$ increases award (2) for all five award (1) for one absorption which decreases and one which increases			2	2			
			III	award (1) for any of following rearrangement reaction therefore M_{r} is unchanged both compounds have the same M_{r} atom economy is 100%			1	1			

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
(c)			award (1) each for any two of following availability / cost of catalyst temperature needed pressure needed - linked to cost or safety availability of starting materials percentage conversion other answers to be discussed at the conference	2			2		
(d)	(i)	award (1) for either of following to prevent water / cyclohexanol from distilling over to only allow cyclohexene to distil over			1	1		1	
	(ii)	to avoid a build-up of pressure / to allow air present in the apparatus to escape	1			1		1	
	(iii)	water (1) some escapes from the mixture because its boiling temperature is not much higher than $90^{\circ} \mathrm{C}$ (1)		2		2		2	
	(iv)	$\begin{aligned} & \text { moles of cyclohexene }=\frac{10}{66}=0.152 \\ & \text { percentage yield }=\frac{0.152 \times 100}{0.20}=76 \quad \text { accept } 75 \end{aligned}$		1		1			
	(v)	elimination of 1 mol of water from 2 mol of cyclohexanol			1	1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(e)	(i)			1:1 mole ratio for an addition reaction therefore 6.86 g is the mass of of 0.070 mol (1) $\begin{equation*} M_{r}=\frac{6.86}{0.070}=98 \quad \Rightarrow \quad \text { this fits } \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \tag{1} \end{equation*}$	1	1		2		
	(ii)	1	electrophilic addition	1			1			
		II	 addition of hydrogen across the $\mathrm{C}=\mathrm{C}$ double bond gives the named compound / 4-methylpentan-2-one		1		1			
			Question 7 total	6	8	6	20	1	4	

Question				Marking details	Marks available					
					A01	AO2	AO3	Total	Maths	Prac
8	(a)	(i)		Indicative content $4.0 \mathrm{~cm}^{3}$ of benzaldehyde used $3.6 \mathrm{~cm}^{3}$ of phenylamine used suitable volume of ethanol $\left(25-50 \mathrm{~cm}^{3}\right)$ / minimum volume health and safety considerations / risk assessment reference to stirring suitable size of apparatus use of dropping pipette / measuring cylinders	2	2	2	6		6
				5-6 marks Correct method with appropriate quantities of reactants an The candidate constructs a relevant, coherent and logically content. A sustained and substantiated line of reasoning is accurately throughout. 3-4 marks Acceptable method with omission of some quantities of re The candidate constructs a coherent account including many reasoning is evident in the linking of key points and use of 1-2 marks Brief outline method with limited detail relating to reagents The candidate attempts to link at least two relevant points and/or inclusion of irrelevant materials. There is some evid vocabulary. 0 marks The candidate does not make any attempt or give an answ	sizes ccoun scient ppara elem ventio us cative opriate credit.	cludin conve sizes s of th and v terial. se of	ll key ions and dicativ bulary heren ntific	ements vocab conten is gene is limi nventio	of the in ary are Some lly sound d by om and	cative sed ssion

Question			Marking details			Marks available								
			A01	AO2	AO3	Total	Maths	Prac						
	(ii)	1				award (1) for either of following operates at room temperature quicker			1			1		
		II	award (1) for either of following lower yield problem of removing catalyst			1			1					
(b)			structure of the 2-isomer allows intramolecular forces / forces within each molecule to occur (1) this reduces the tendency for intermolecular forces (1) less energy is needed to separate the molecules into the liquid state giving a lower melting temperature (1) structure of the 4-isomer does not enable intramolecular forces to occur in the same way so the tendency is for 'more' intermolecular forces and higher melting temperatures (1)				2	2	4					
(c)	(i)		Reagent NaHCO_{3} $\mathrm{I}_{2} / \mathrm{NaOH}^{2}$ FeCl_{3} award (1) for	Benzoic acid effervescence no observation	2-Hydroxybenzaldehyde no observation no observation purple solution		2		2		2			
	(ii)		$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{3} \mathrm{Fe}$					1	1					

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)		$5.5 \times \frac{12}{100}=0.66 \mathrm{~g}$ in 100 g of oil $0.66 \times 10^{-2} \mathrm{~g}$ in 1 g of oil $6.6 \mathrm{mg} \mathrm{g}^{-1}$ (1) must be given to 2 sig figs		2		2	1	
		(ii)	award (1) for any of following ethanol is renewable $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is not renewable / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ made from oil $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ damages the ozone layer other answers to be discussed at the conference		1		1			
		(iii)	diazonium compounds react with phenols to give coloured azo dyes mention of chromophores / $-\mathrm{N}=\mathrm{N}-\quad$ (1)			2	2			
		(iv)		1	1		2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
	(v)	I		for thymol to dissolve in water hydrogen bonding must be possible the - OH group (which could form hydrogen bonds with water) is only a small part of a much larger molecule (1)	1	1		2		
		II				1	1			
(b)	(i)		alcoholic $\mathrm{KOH} / \mathrm{NaOH}$		1		1		1	
	(ii)		award (1) for either of following both carbon atoms involved in the $\mathrm{C}=\mathrm{C}$ bond are bonded to two different atoms / groups there is no rotation about the $\mathrm{C}=\mathrm{C}$ bond	1			1			
	(iii)			1			1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		$\frac{140}{(6 \times 30)+(4 \times 17)} \times 100=56$ award (2) for correct answer if answer incorrect award (1) for three correct M_{r} values $\begin{aligned} & M_{[}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}\right]=140 \\ & M_{\mathrm{r}}\left(\mathrm{CH}_{2} \mathrm{O}\right)=30 \\ & M_{\mathrm{r}}\left(\mathrm{NH}_{3}\right)=17 \end{aligned}$		2		2	1	
		(ii)	all carbon atoms are in same environment and all hydrogen protons are in the same environment			1	1			
		(iii)	tertiary - nitrogen atom bonded directly to three carbon atoms (1) base - nitrogen atom has lone pair (which it can donate) (1)	1		1	2			

| Question | | Marking details |
| :--- | :--- | :--- | :--- |
| | 5-6 marks
 Each reaction considered, errors identified and suitable corrections suggested
 The candidate constructs a relevant, coherent and logically structured account including all key elements of the
 indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary
 are used accurately throughout.
 3-4 marks
 Most of the reactions considered, some errors identified and some suitable corrections suggested
 The candidate constructs a coherent account including many of the key elements of the indicative content. Some
 reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.
 1-2 marks
 Some of the reactions considered, attempt to identify errors
 The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission
 and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and
 vocabulary.
 0 marks
 The candidate does not make any attempt or give an answer worthy of credit. | |

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)			signal at 2.30 ppm due to (side-chain) alkyl protons and signal at 7.05 ppm due to aromatic protons (1) both signals are singlets so alkyl protons are all equivalent and aromatic protons are all equivalent (1) peak heights of 6 (aliphatic / methyl) and 4 (aromatic) fit the structure of 1,4-dimethylbenzene (1)		3		3		
	(b)		$\begin{align*} & 1: 1 \text { mole ratio } \Rightarrow 0.240 \mathrm{~mol} \text { of product expected }(1) \\ & \text { increase in mass }=0.240 \times(175-106)=16.6 \tag{1} \end{align*}$		2		2	1		
	(c)			1	2		3			
	(d)		alkaline potassium manganate(VII) / KMnO_{4}	1			1		1	

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	5	6	4	15	1	3
6	4	10	3	17	4	2
7	6	8	6	20	1	4
8	4	8	5	17	0	8
9	6	8	3	17	3	1
10	6	8	6	20	2	1
11	4	9	1	14	1	2
Totals	35	57	28	120	12	21

